Healthy Building Science

  • HOME
  • Who We Are
    • Meet The Team
    • Position Statements
      • Healthy Paints & Coatings
      • Damp Buildings & Mold Testing
      • Water Filtration for All Building Types
    • Qualifications and Partnerships
  • What We Do
    • Residential Services
    • Environmental Testing
      • Cleaning, Verification & Coronavirus Testing
      • Air Quality Testing
      • Water Quality Testing
      • Soil Testing
      • Asbestos Testing
      • Mold Testing
      • Lead Testing
      • EMF Testing – RF Testing
      • LEED IAQ Testing
      • Silica Air Testing (OSHA)
      • Compliance Testing USP 797
    • Healthy Building Inspections
      • Cleaning, Verification & Coronavirus Testing
      • Air Quality Inspection
      • Asbestos Survey
      • Lead Inspection
      • Moisture and Mold Inspection
      • WELL Building Verification Testing
    • Industrial Hygiene and Compliance Testing
      • Cleaning, Verification & Coronavirus Testing
    • General Contractor
    • Process and FAQs
      • Architect FAQs
      • Building Owner FAQs
      • Property Manager FAQs
      • Human Resource Managers FAQ’s
  • Case Studies
    • Commercial – Industrial
    • Residential
    • School and Health Care Facilities
  • Blog
  • Contact Us
  • Home
  • Blog
  • Healthy Building Inspections & Testing
  • Mitigating Potential COVID-19 Exposure with HVAC Systems
February 1, 2023

Mitigating Potential COVID-19 Exposure with HVAC Systems

Mitigating Potential COVID-19 Exposure with HVAC Systems

by Laurel Cain / Wednesday, 17 June 2020 / Published in Healthy Building Inspections & Testing, Industrial Hygiene, News

How HVAC Systems Help Reduce Potential COVID-19 Exposure:

As the economy begins to reopen and we return to our buildings, what role do building ventilation systems play in reducing our risks of infection? Infection via inhalation or contact with droplets is well understood at this point. Another potential exposure route being discussed is exposure via microdroplets, also called aerosols. The evidence for transmission via aerosols is currently incomplete. Until the potential for airborne viral transmission is better understood, the heating and cooling (HVAC) systems in buildings should be part of an overall strategy to limit the risk of indoor infections from COVID-19.

In the traditional infection control pyramid from the US Center for Disease Control and Prevention (CDC), the most effective controls, Elimination, and Substitution are currently not options. The next best option is Engineering Controls followed by Administrative Controls; the last resort is PPE. If used correctly, HVAC systems provide engineering controls to the spaces we occupy. Simulations [1] suggest that proper ventilation is effective in containment or minimizing [2] the virus in indoor environments.


Figure 1. (Modified) Hierarchy of Controls for Protecting Workers from the U.S. CDC.

The virus travels in the form of droplets and aerosols (which are the droplets with the moisture evaporated and much smaller particles.) The moisture in droplets protects the virus and is also a larger particle that settles out of the air fairly quickly. Droplets are typically in the range of 10 micrometers (μm) and settle within 10 minutes. Aerosols can remain airborne from hours to days, however, they carry a lower concentration of the infectious virus.

Figure 2. Particle Settling Rates in Still Air.

Can the virus get pulled into the HVAC system and distributed throughout the building?

ASHRAE (the American Society of Heating, Ventilating, and Air-Conditioning Engineers) and the European counterpart, REHVA (the Federation of European Heating, Ventilation, and Air Conditioning Associations) have acknowledged this potential indoor airborne hazard and have compiled control measures. [3] [4]

Based on these guidance documents, the following practices are strongly recommended for commercial and public buildings (e.g. offices, schools, shopping areas, sports premises, etc.) where only occasional occupancy of infected persons is expected; hospital and healthcare facilities (usually with a larger concentration of infected people) have more extensive risks to manage and more engineering controls in place to control those risks.

ASHRAE Recommendations:

  • Do not recirculate air.

Increase outdoor air ventilation (disable demand-controlled ventilation and open outdoor air dampers to 100%) as indoor and outdoor conditions permit. There are energy use implications to not recirculating air and comfort may be compromised; however, it is more important to prevent contamination and protect public health than to guarantee thermal comfort.

  • Keep systems running longer hours (24/7 if possible).

    Switch ventilation to a nominal speed at least 2 hours before the building usage time and switch to lower speed 2 hours after the building usage time. Do not switch ventilation off nights and weekends, but keep systems running at a slower speed. Keep toilet ventilation in operation 24/7 since transmission via fecal aerosols is possible.

  • Use high-efficiency filters.

Filtration can reduce the risk in recirculated air, however, not all filtration systems are equal. Many filters are only effective at removing larger particles and allow virus sized particles to pass through. High-efficiency filters can remove submicron-sized virus particles but can also reduce the performance of HVAC systems. Additionally, any gaps around the filter housing can render the filter useless. Ensure the system is well maintained and that modifications do not damage the system.

Recommendations with fair evidence for reducing exposure to occupants:

  • Temperature and humidity control.

    It is not practical to use an HVAC system to create conditions necessary to inactivate the virus, however, maintaining relative humidity (RH) between 40-60% prevents the dehydration of nasal systems and mucous membranes in occupants which improves immunity to respiratory infections. It may also slow the dehydration of droplets allowing settling before aerosolization occurs.

  • Use personalized ventilation systems for certain high-risk tasks.

    Workers having significant contact with the general public could benefit from a continual supply of fresh air.

  • Use portable, free-standing, high-efficiency particulate air (HEPA) filters.

    Electrostatic filters are also considered to be effective. Ionizing filters are strongly discouraged due to the potential to generate ozone [8], a strong respiratory irritant. Increasing ventilation is more effective than portable filtration, however, if a portable device is employed, locating the device close to the occupant’s breathing zone.

  • Add duct or air handling unit mounted ultraviolet germicidal irradiation (UVGI) devices in high-density spaces.

    The majority of modern UVGI lamps create UV-C energy at 254 nm wavelength, which is capable of inactivating the virus. The efficacy is dependent upon the UV dose and the susceptibility of the virus.

These recommendations supplement the personal hygiene and facility cleaning practices recommended by the WHO [7].

Is your building reopening soon? Healthy Building Science now offers Coronavirus Surface Testing and Cleaning Verification Audits for buildings moving toward reopening.

To get a bid for cleaning verification audit or testing for Coronavirus, SARS-CoV-2, COVID-19, please call 415-785-7986 or complete this online form today!

References

[1] Estimation [1] n of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment
Giorgio Buonanno, Luca Stabile, Lidia Morawska medRxiv 2020.04.12.20062828; DOI: https://doi.org/10.1101/2020.04.12.20062828

[2] L. Morawska, J.W. Tang, W. Bahnfleth, et al., How can airborne transmission of COVID-19 indoors be minimized?,Environment International (2020), DOI: https://doi.org/10.1016/j.envint.2020.105832

[3] American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), ASHRAE Position Document on Infectious Aerosols, April 14, 2020.
https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf

[4] Baron, P. n.d. Generation and Behavior of Airborne Particles (Aerosols). Presentation published at CDC/NIOSH Topic Page: Aerosols, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Cincinnati, OH. www.cdc.gov/niosh/topics/aerosols/pdfs/Aerosol_101.pdf.

[5] Federation of European Heating, Ventilation, and Air Conditioning Associations (REHVA). REHVA COVID-19 guidance document, How to operate and use building services to prevent the spread of the coronavirus disease (COVID-19) virus (SARS-CoV-2) in workplaces

[7] World Health Organization (WHO). Getting your workplace ready for COVID-19.
https://www.who.int/docs/default-source/coronaviruse/getting-workplace-ready-for-covid-19.pdf?sfvrsn=359a81e7_6

[8] California Air Resources Board. Hazardous Ozone-Generating “Air Purifiers”.
https://ww2.arb.ca.gov/our-work/programs/air-cleaners-ozone-products/hazardous-ozone-generating-air-purifiers

Tagged under: Air Quality Testing, Building Science, coronavirus, corvid-19, Indoor Air Quality, Industrial Hygiene

About Laurel Cain

What you can read next

Asthma and Allergy Resources – 2011
easy ways to protect your family
Free and Easy Ways to Protect Your Family Today
EMF Resources
Electromagnetic Field (EMF) Resources – 2011

1 Comment to “ Mitigating Potential COVID-19 Exposure with HVAC Systems”

  1. Could Indoor Air Pollution be Making You Sick? – Regina Ryerson says :
    February 13, 2022 at 4:36 pm

    […] Have your HVAC system checked. Here’s what the experts at Healthy Building Science (HBS) recommend. […]

Who is Healthy Building Science?

We are an environmental consulting firm based in the San Francisco Bay Area, a group of scientists working to make your indoor spaces healthier. We test your building or property to find harmful pollutants.
Healthy Building Science

Environmental Testing Services at HBS

  • Air Quality Testing
  • Water Quality Testing
  • Soil Testing
  • Asbestos Testing
  • Lead Testing
  • Mold Testing
  • RF Testing – EMF Testing
  • LEED IAQ Testing
  • Silica Air Testing (OSHA)
  • Compliance Testing USP 797
  • WELL Building Verification Testing
  • Environmental Testing
  • Industrial Hygiene and Compliance
  • Cleaning, Verification & Coronavirus Testing

Search HBS Blogs

Blog Categories

Archives

Sign up for our Quarterly newsletter

Subscribe to our e-mail newsletter to receive helpful updates and articles from Healthy Building Science.
SIGN UP FOR OUR QUARTERLY NEWSLETTERR

We value your privacy.
Your email is never shared or sold.

Sustainable Business Certifications

California Green Business Network

Get in Touch

To speak directly with someone;
Call (415) 785-7986

Email: [email protected]

Or click the button below, tell us a little about your project and let our environmental consultants help you create a healthier building.

New Project Inquiry

Latest From Our Blog

  • Want to Protect Your Home from Wildfire? The Secret’s not Luck – It’s Science

    It’s no secret – anyone living in Marin and Son...
  • What is ERMI Testing?

    Scientists always needed a reliable process to ...
  • Outdoor Living Tips from HBS and Redfin

    Healthy Building Science recently spoke to Redf...

Blog Categories

  • Business
  • Environmental Consulting
  • Environmental Testing
  • Green Building Consulting
  • Healthy Building Inspections & Testing
  • Industrial Hygiene
  • News

Locations

Mailing Address:
369-B Third St. # 521
San Rafael, CA 94901

San Francisco
201 Spear St, Suite 1100, #3226
San Francisco, CA 94105

Phone: (415) 785-7986

Email: [email protected]

  • GET SOCIAL
Healthy Building Science

© 2022 Healthy Building Science. All rights reserved.

TOP